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PREFACE
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1. INTRODUCTION

Charge designels use a variety ot chemical and physical means to control the interior
ballistic (IB) process. In the case of solid propellant guns, for instance, propellant type,
granulation, web and mode of ignition are among the control mechanisms used to attain
reliable, repeatable interior ballistics. Although specific contro! factors depend upon the
physical mechanisms of any given propulsion scheme (Juhasz, Knapton, and White 1990), the
principles used to govern widely differing 1B processes are similar. The concern for avoiding
pressure waves (e.g., the distributed ignition principle used in solid propellant charges) was
also considered in bulk-loaded liquid propellant (BLP) gun systems.

Currently, there is strong interest in electrothermal-chemical (ETC) gun propulsion. In this
approach, a bulk of energetic working fiuid Is ignited by an injected plasma resulting in the gas
generation neaded to cause projectile motion. This process is, in some ways, similar to the
ignition nt a BLP charge. Considering this similarity, as well as the potential commonality of
principles governing the functioning of widsly differing gun systems, it is possible that some ot
the control factors found to work for BLP guns might also apply as well for ETC guns.

The objective of this report, therefore, is to bring together a number of observations made
on the control of the BLP gun over a 30—40 year period in the hopes that the observations will
prove useful to investigators currently engaged in the ETC gun area. Obviously, the summary
given in this report cannot be comprehensive due to the extensive number of BLP gun
studies. What we will present is a summary of the major control mechanisms together with
some illustrations. A more complete summary of the experimental control mechanisms used
in BLP guns may be found in Knapton et al. (to be published).

2. COMBUSTION MECHANISMS IN BLP GUNS

The combustion mechanisms in BLP guns are reviewed elsewhere (Knapton et al., to be
published; Comer, Shearer. and Jones 1963; Comer and McBratney 1972; Comer 1977,
Guzdar, Rhee, and Erickson 1971; Phillips et al. 1980; Morrison, Knapton, and Bulman 1988).
Here we will give only a brief summary of the dominant combustion mechanisms which are
believed to exist during the 1B cycle.




First, for a comparison, the gas generation rate for solid propellant guns is accurately
given by the known dimensions of the solid propellant grains and the linear burning rate. For
the BLP gun there is no well-defined surface which can be used to estimate the gas
generation rate. Instead, the gas generation rate requires various hydrodynamic instabilities
to generate the required pressure during the IB process. Numerous experimental BLP gun
programs have shown that the best performance can be achieved with breech Iignition,
although some studies have suggested that ignition at the base of the projectile may give
better repeatability. Because of interest in increased performance, however, most of the
studies have involved pyrotechnic or electrical ignition at the breech. With breech ignition,
both a pressure wave and a gas cavity are formed. The important effects of pressure waves
are considered only briefly in this report; the effect of pressure waves are examined more
thoroughly in a separate paper (Knapton and Minor 1990),

The gas cavity is referred to as the “Taylor cavity." As the projectile is accelerated down
bore, the Taylor cavity penetrates through the liquid column, a result which occurs when any
two-fluid system is accelerated such that the less dense fluid (the gas) Is accelerated in the
direction of the more dense fluid (the liquid propellant). A gas core Is formed along with a
turbulent gas-liquid interface. The gas-liquid mixing at this interface Is called "Helmholtz
mixing" and is the dominant combustion mechanism during the IB process.

The growth of the Taylor cavity is dependent on the acceleration of the projectile, and the
Helmholtz mixing is dependent on the gas velocity at the gas-liquid interface. Therefore, the
development of the required propellant surtace area during the IB process is dependent on
tunctions related to velocity and acceleration. One might expect, therefore, that the gas
evolution would be dependent on the inertia of the propulsion system (i.e., the mass of the
projectile and the charge). Tests in a 37-mm gun were performed (Comer, Shearer, and
Jones 1963) without damage to the gun with hydrazine-based monopropellants with projectile
masses varying by a factor of 50 (from 71 g to 3.63 kg). Also, tests were performed
(Knapton et al. 1983; Knapton and Stobie 1979b) in a 37-mm gun with a HAN-based
monopropellant (NOS-365) with the same charge mags and with projectile masses varying
from 293 g to 929 g, also without excessive pressures. The pressure-time records from the
tests with the HAN-based monopropellants are shown in Figure 1, These examples serve to
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illustrate the importance of the acceleration and velocity on controlling the generation of the
propellant surface area and thereby limiting the gas evolution.

With an understanding of the combustion mechanisms one can recognize the importance
of breech ignition in establishing the Taylor cavity and the subsegquent Helmholtﬁ mixing. With
ignition elsewhere in the charge (e.g., at the projectile base), there would likely be a pressure
profile established in the charge which would disturb the propagation of the Taylor cavity and
retard the gas generation rate and result in reduced performance. For those cases where
ignition at the projectile base yielded reasonable performance, it was never clear if there was,
indeed, secondary ignition at the breech as a result of adiabatic compression of gas bubbles.
This uncertainty on the existence of possible uncontroiled ignition sites serves to emphasize
the importance of using extensive diagnostics during the development stages in exploratory
propulsion programs.

Although many bulk-loaded studies relied on breech ignition, the studies were performed
at the expense of exacerbating the longitudinal pressure wave problem. Therefore, the
studies (Knapton and Minor 1990) {requently included investigations of various techniques,
such as the use of foam and projectile base wave absorkers, to minimize pressure wave
reinforcement effects.

3. CONTROL MECHANISMS AND IGNITION SOURCES IN THE BLP GUN

The 1B control mechanisms that have been evaluated for the BLP gun are the
mechanisms related to the initial conditions: igniter characteristics, propellant properties,
ullage, and chamber geometry. Details on these initial conditions may be found in Knapton
et al. (to be published). For a dynamically injected propellant, such as what might be used in
& practical weapon, an additional control mechanism exists related to the injection parameters
and the subsequent emulsion (droplet size and distribution) in the chamber (Wood and Bryant
1977; Charters, Compton, and Wood 1977; Mallory 1981, 1984). Once the ignition of the
charge and combustion are underway, the mass generation rate of gas depends on the fluid
dynamic instabilities discussed above. An additional instability mechanism, ignition from
adiabatic compression of bubbles, may also occur with some propellants. |f adiabatic
compression of bubbles is likely, then a potentially serious problem may exist due to ignition




throughout the charge and the generation of excessive gas generation rates. A further
uncontrolied ignition source may also occur as a result of frictional heating and ignition during
the engraviny process.

In order to introduce some control during combustion, Goddard and Goddard (1983, 1984)
(Goddard 1981) proposed the use of what they called non-Newtonian controlied burning
surface propellants (e.g., gelled propeliants). The type of propellants envisioned included
propellants with physical properties that would dampen instability waves during combustion
and propellants containing solids that would offer a well-defined surface area. The proposed
approach has merit and will be commeanted on in a subsequent section.

4, EXAMPLES OF FLAT PRESSURE-TIME CURVES

To provide some illustrations of the type of |B control which investigators have identified,
we summarize in this section examples where conditions were such that relatively flat
chamber pressure vs. time curves were generated. Flat pressure-time curves have been a
goal of interior ballisticians for many years. Maximum performance Is obtained when the
projectile base pressura Is constant throughout the projectile travel. Since the base pressure
in not usually measured, we report here the chainber or breech pressure which is often used,
assuming the Lagrange density distribution, as an indication of the base pressure.

4.1 30-mm, Detroit Controls Corporation. During the 1950s, Eimore, Quinn, and
Anderson (1955) performed many parametric tests with a mixture of hydrazine, hydrazine
nitrate, and water in a 30-mm gun. For a 62.4%, 31.7%, and 5.7% mixture, they found for
both pyrotechnic and electrical ignition that the location of the igniter in the chamber and the
angle at which the gases vented into the chamber were important parameters, and that in
some cases, reasonably flat pressure-time curvas were generated. It was found that venting
the gases tangentially into the chamber, when compared with a radially venting primer, gave
the most satisfactory performance.

Based on the pressure-time traces given in Eimore, Quinn, and Anderson (1955), it
appeared that the radially venting primer gave somewhat better flat pressure-time curves.
Interestingly, there was little difference in the performance for either rear or front ignition;




better repeatability was obtained when the igniter was located at the base of the projectile.
These observations, when compared with the later work of Jones et al. (1965), suggest that
additional ignition sites may have indeed been present. Normally, as indicated earlier, the
performance would be expected to be degraded If ignition is limited to ignition at the projectile
base.

The tests with the tangentially ventea igniter suggest that some improvement in the control
of the IB processes may result if there is some initial stability as a result of centrifugal forces
imparted to the initial formation of the Taylor cavity. This possible control mechanism was not
studied further with the exception of some promising unpublished resuits reported more
recently by R. Pate (1989).

Elmore, Quinn, and Anderson (1955) also found that the propellant properties could have
a significant effect on the type of pressure-time traces. The hydrazine nitrate content was
varied from 23% to 42% while keeping the water content at 5%. Interestingly, for tests with
32% hydrazine nitrate content, the pressure-time traces were relatively fiat,

42 37- Ilisti r RAL).* Comer, Shearer, and Jones (1963), in

the report mentioned earlier, and Jones et al. (1965) in the 18508 and early 1960s, reviewed a
large body of data obtained from both Otto-Il and hydrazine firings in 37-mm guns. They
concluded that the data could be divided into two groups based on the shape of the
acceleration-time curve and, to a iesser extent, on the shape of the pressure-time curve. The
data included tests where the muzzle velocities varied from 424 to 2,589 m/s, depending on
the charge-to-mass ratio and the expansion ratio. They (Jones et al. 1965) concluded from
their diagnostic tests that, in the first group, the propellant was probably ignited at the
projectile base and burned mainly in the chamber; and, in the second group, some of the
propellant was displaced down bore before being converted to gas. The resulting
pressure-time curves for the first group of tests were mostly fiat (Figure 2b). The second

*On 30 Soptember 1892, the U.S, Army Ballistic Research Laboratory was deactivated and subsequently
became a part of the U.S. Army Ressarch Laboratory on 1 October 1892,
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group resulted in two peaked-type pressure curves (Figure 2a). Also, the second group
resulted in higher projectile velocities, but at the same time a higher variability in the results.
Their conclusions (Jones et al. 1965) on likely front end ignition were arrived at from tests
using bore surtace thermocouples to detect onset of burning and tests with water barriers at
the base of the projectile to prevent the suspacted propellant ignition during projectile
engraving. As a result of their diagnostics, they postulated that ignition of the charge occurred
during engraving for the first group of tests.

During the 1960s, McBratney (Comer and McBratney 1972; McBratney, uhpubllshed;
Knapton et al. 1877) studied spark ignition using a hydrazine-based monopropellant in a
37-mm gun. The igniter was located in the breech in a cylindrical cavity or spark plenum with
an insulated center electrode. A capacitor discharge caused electric currant to flow through
the propellant located between the electrodes. The cepacitance was 30 wF and the voltage
applied across the capacitor was about 1,800 V. For a group of seven rounds with a projectile
mass of 146 g and a charge-to-mass ratio of about 2.24, the mean muzzle velocity was
2,088 m/s with & standard deviation of 2.1%. The pressure time curves showed a rise to a
peak pressure followed by a relatively flat plateau.

4.3 90-mm, Detroit Controls Corporation. In the 1950s, Eimore (1975) tested various
hydrazine mixtures in a 90-mm tank gun. The propellant was ignited at the breech using a

spark discharge in a 0.4-cm® pre-combustion chamber followed by a 2.5-cm® booster
chamber. The pressure-time traces were generally flat, especially for tests with a mixturoe of
63% hydrazine, 32% hydrazine nit. ate, and 5% water. Figure 3 shows a group of five rounds.
For one group of five tests with a charge-to-mass ratio of 1.06, the mean maximum chamber
pressure was 379 MPa with a variation in the standard deviation of 1.8%. The corresponding
mean velocity was 1,423 m/s with a variation in the standard deviation of 0.86%.

44 120- listic Research Laboratory. McBratney (Comer and McBratney 1972a;
Knapton et al. 1977; McBratney 1964—-1967), also in the mid to late 1960s, performed tests

using a hydrazine mixture in a 120-mm gun with a 12.24-liter chamber. A total of 29 firings
were made with the objective of demonstrating the high performance capability of the BLP gun
in a large-caliber weapon. The propellant was a mixture of hydrazine and hydrazine nitrate,
and the ignition was at the breech. The primer was pyrotechnic and was tested with various

8
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vent patterns and primer mixes. The test series demonstrated that a relatively flat breech

pressure-time trace could be generated. The maximum performance for a 3.57-kg projectile

with a charge-to-mass ratio of 3.53 and 50.8 calibers of travel was 2,140 m/s. For this test

the maximum breech pressure was 328 MPa. The chamber length from the breech face to

the projectile base was 647 mm. .

An illustration of the primer used in one of the tests along with the pressure-time curves is
shown in Figure 4. The primer charge consisted of 13.4 g of A4 black powder, 2.0 g of
Fe,0,, and aluminum foil to seal the holes. The internal volume of the primer was 18.6 cm®.
Earlier tests had suggestad that the addition of the Fe,0, yielded improved igniticn. To
reduce the possibllity of front end ignition during the engraving process, a nylon engraving
band was used. Test Nos. 24-28 also resulted in acceptable ignition and pressure-time data.
On Test No. 29, the tube failed—apparently a result of poor ignition, Likely cause for the
fallure Is given in the following section.

5. CATASTROPHIC FAILURES

The studies on the initial conditions which offered a level of control of the IB processes
resulted in many successful programs. Because of the velocity and acceleration-dependent
mechanisms discussed earlier, it may first appear that excessive pressures should be
automatically avoided in BLP guns. Unfortunately, such is not the case. Several catastrophic
failures occurred during the BLP gun test programs. We review in this section the conditions
which likely contributed to the failures. Importantly, these same conditions, depending to a
large extent on the type of propellant, may also apply to ETC guns.

Conditions contributing to high pressures are likely a result of poor ignition and/or
conditions which may contribute to the generation of a large surtace area of the propellant.
Related conditions which can further exacerbate the evolution of excessive gas generation
involve the high initial loading density in the chamber; the iack of dissipative mechanisms for
wave attenuation, such as boundaries which exist at solid propellant grains; uncontrolled
ignition sites, such as ignition from adiabatic compression of bubbles; and the basic
hydrodynamic instability mechanisms.
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5.1 120-mm, Ballistic Research Laboratory. The last firing In the 120-mm BLP gun firing
series resulted in a catastrophic failure. The failure was attributed to poor ignition. Based on
a post-firing review, it appeared that the gases from the igniter had vented to the rear of the
primer as well as into the propellant. The result was a poorly ignited charge resulting in
displacement of the charge down bore and a large increase in the propellant surface area.
The unburned propellant, combined with a large surface area, ignited in a region of the gun
tube which could not withstand the resulting pressure.

5.2 25-mm Dynamically Loaded BLP Gun, Naval Weapons Center (NWC)., The NWC
(Wood and Bryant 1977; Charters, Compton, and Wood 1977; Mallory 1981, 1984) developed

a bipropellant, automatic 25-mm BLP gun designed to operate at a firing rate of

350 rounds/min. The bipropellant was a mixture of 80% nitric acid and a proprietary
hydrocarbon. From the NWC technology studies, it was concluded that the injector design
and operating characteristics provided an important method for controlling the ballistics. Either
high or low pressuras could be generated, depending on the injection parameters. High
pressure resulted when the injected fuel had a surface-to-volume ratio of 119/em, whille low
pressures resulted when the surface-to-volume ratio was 39/cm. It was found that the gun
operated satisfactorily with a surface-to-volume ratio between 39-59/cm. Variations in the
oxidizer-to-fuel ratio could also be used to change performance. The effect of ullage, for small
values of 3-5%, was found to be important for ignition and functioning of the gun, but had little
eftect on the ballistics.

A catastrophic failure occurred during the early testing and was attributed to, too fine of a
mix as a result of the injector characteristics.

53 75-mm, Pulsepower Systems Incorporated (PSI). PSI studied (Quinn and Boyd 1978)
under a DARPA contract the technology for developing a high performance, automatic 75-mm
BLP Gun. Monopropellant NOS-365 was used In the tests and the propellant was electrically
ignited. Two successive failures occurred—Round No. 205 (June 1976) and Round No. 206
(5 August 1976). For Round No. 205, stored electrical energy amounting to 288 J (Eimore
1976a) was used. The charge-to-mass ratio was 1.0, the chamber volume was 2032 cm?,
and the estimated ullage was 32.9 cm?. The Initial evaluation of the results from Round




No. 205 was that a high-order detonation may have occurred near the middle of the chamber
at about 45.7 cm.

Continued review studies on the results from Round No. 205 by B. Taylor, BRL, Drabo
and R. Huddleston, Material Test Directorate (MTD), Aberdeen Proving Ground, MD,
concluded (Knapton 1976a) that there was not sufficient evidence to warrant a definite finding
that there was a high-order detonation. Examination of the metal fragments suggested that
the damage could have been caused by a single event or by a numbar of earlier firings.
Further, the Rockwall hardness numbers indicated that the steel was extremely brittle as a
result of poor heat treatment. It was concluded that a possible metallurgical problem may also
have been a contributing factor to the tailure associated with Round No. 205.

Supporting the possibllity that the gun tube was already damaged prior to Round No. 205,
was the result from Round No. 204, Based on a conference telephone call between MTD,
BRL, and NWC, it was indicated that the chamber after Round No. 204 had been deformed by
80 mil due to high chamber pressure in the round (Knapton 1976b). It was also concluded
from this conversation that there were sufficient questions as to preclude a firm conclusion
that a high-order detonation had indeed occurred during Round No. 205.

The pressure-time trace from Round No. 206 (Comer 1976) indicated an initial pressure
rise to about 20 ksi within about 250 us which was followed by a *... rapid decay to about
4-5 ksi all within about 250 us. This low pressure regime continued about 500-600 us after
the Initiating sparking event, and then this round also appeared to go as a high-velocity
detonation." At this time, the cause of the explosion (Incl 1 to Comer [1976]), despite earlier
negative results from the Naval Ordinance Laboratory (NOL) card pap test, appeared to be a
result of shock initiation of a low-order detonation in a non-homogeneous (bubbly) liquid
monopropellant which transited to a high-order detonation under confinement (Fourth
International Symposium 1965).

Our conclusions from a review of the evidence, is that the high pressures were likely due
to combustion, possibly a low order detonation. The cause of the high pressures for the two
firings was never studied In detail. Our conclusions as to the cause of the high pressures
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were likely associated with a procedural loading and firing error for Round No. 205, possibly
coupled with an abnormal propellant.

The procedural error resulted in the propellant being rapidly loaded and fired without the
normal propallant pre-pressurization. The measured pre-pressurization (Quinn and Boyd
1978) was less than 115 psi, which compared with a normal pre-pressurization of 800 psi. As
a rasult, there were likely large bubbles distributed throughout the charge which may have
ignited from adiabatic compression during ignition. The abnormal propellant may have been
due to a mixture of propellants, including one lot (H-38) which was shown later to be difficult
to ignite (Eimore 1976b).

Another possible cause of the failure may have been associated with adiabatic
compraession of trapped gas during the ignition. The trapped gas, located at the projectile
base, may have been due to the low pre-pressurization which resulted in an improperly seated
projectile.

A possible contributing factor to the high pressure recorded in Round No. 208 was likely
the abnormal propellant, lot H-38. As described previously, the pressure start-up
characteristics showed an abnormal long delay from 500 to 600 us at relatively low pressure.

6. IGNITION CONSIDERATIONS

For possible relevance to ETC, a summary of the ignition energies may be of interest.
Solid or liquid propellants may be ignited with less than 1 J of energy. For practical igniters
for use in guns, considerably more energy is required if the ignition is to result in sustained
combustion and complete burning of the charge. Table 1 gives an estimate of the ignition
energles that have been successfully applied in various test programs. Location of the igniter
Is fimited to breech ignition, although similar levels of energies were used in programs where
the location of the igniter was changed.

Two energies are listed in Table 1 for the cases with the electrical igniters. The first
number refers to the electrical energy based on what was believed to have been delivered to
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the electrodes, and the second number refers to the energy of the propellant contained in a
pre-combustor volume adjacent to the electrodes.

Aside from the 37-mm example which used a relatively large solid propellant igniter,
Table 1 shows that the ignition energy is quite small when compared with energies normally
used for ETC application.

Perhaps one of the more interesting examples in Table 1, which may be of relevance to
ETC, is the 37-mm example with the large solid propellant igniter. In this case, the ignition
energy begins to approach the electrical energy used for medium-caliber ETC guns. The
pressure-time record for this example is illustrated in the center figure in Figure 5. With a
large solid propellant igniter, the control of the initial start-up characteristics should be
improved. These tests were performed at the end of the last BLP program and only a few
tests were conducted. The examples shown in Figure &, however, suggest that if control of
the start-up is achieved, then perhaps improved repeatability can be obtained as well as an
approach for coniroliing the maximum pressure.

Repeatable ignition (Knapton and Stobie 1979a) has been considered a necessary
condition for achieving repeatable ballistics. Unfortunately, for the BLP gun, there are other
conditions which inust be considered. One of the more disturbing comparisons from some
37-mm tests is shown In Figure 6. Prior to this firing, the igniter had been evaluated (Knapton
et al. 1983) in open air tests and in closed chamber tests. In these tests, it was found that the
igniter offered an approach for achieving repeatable performance. Whan tested in a 37-mm
gun, the pressure-time curves confirmed (as shown by the example in Figure 6) that there was
excellent agreement In the pressure-time curves for two tests during the early start-up.
However, later in the IB cycle, the two pressure-time curves deviated markedly. The deviation
illustrated in the two records in Figure 6 occurs where the Helmholtz mixing would be
expected to dominant the IB process. Therefore, it appears that additional control
mechanisms are necessary if the BLP gun Is to function in a repeatable manner. Of course,
one method postulated hy the ETC community for achieving control is to maintain the
electrical input over a longer period of time.
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7. DISCUSSION

We have not summarized in this report the level of reproducibility that might be achieved
with the BLP gun. Appropriate summaries are given elsewhere (Morrison, Knapton, and
Comer 1976) and generally show that tha best that can be expected for muzzle velocity
repeatability, based on small gioups of data, Is a one standard deviation between 1.0 and
1.5%.

The necessary and sufficient conditions (Comer, Shearer, and Jones 1983; Comer 1977)
to achieve complete burning of a BLP charge during an IB ¢ycle may be obtained from the
fluid dynamic machanisms associated with the Taylor cavity and Helmholtz mixing. Both of
these mechanisms represent instabilities and, therefore, the predictive capability on how the
charge breaks up and burns has not been predicted with any reasonable lavel of confidence.
The lack of a predictive capabiiity has been one of the reasons which has limited the
technology development of the BLP gun. This limitation was recognized in the 1950s, and
pointed out in a review paper by Lewls et al. (1955). They concluded that the empirical
dasign procedures for shaping the pressure-time curves do not permit the use of scaling
methods for application to the design of large-caliber guns, What is required is a fundamental
analysis of the combustion coupled with the hydrodynamic processes. Although several
hydrodynamic modsls were later formulated for the BLP gun, there were no models that were
validated against experimental data.

Although we have concentrated in this review primarily on the conditions which resulted in
flat pressure-time curves, it is apparent from a review of the many BLP gun programs that the
BLP concept offers a means of generating most any type of pressure-time curve. Conditions
which might offer some control on the shape of the pressure-time curve include the type of
igniter (l.e., radial vent vs. axial vent); a tangentially vented primer as dizcussed earlier
(Elmore, Quinn, and Anderson 1955); the increased igniter energy approach demonstrated by
Knapton et al. (1983) and Knapton and Stobie (1979b); propellant properties; ullage; and
chamber configuration (Knapton et al. 1983; Knapton and Stobie 1979b; Eimore 1976b;
McBratney 1981). This report has touched only briefly on these techniques. The chamber
configuration was also found to be an important method for controlling the maximum chamber
pressure (Knapton et al. 1983; Knapton and Stobie 1979b, McBratriay 1981), as well as
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various projectile base wave absorbers (Comer, Shearer, and Jones 1963; Knapton et al.
1983, Knapton and Stobie 1979, DeDapper 1959).

The results from PSI (Quinn and Boyd 1978; EImore 1976a, 1976b) demonstrate that
propellant characterization tests are necessary prior to firing the propellant in guns. Tests ,
should include analytical composition, sensitivity tests, and ignition and combustion tests. The
identification ot a suitable test fixture to qualify the propellant for gun testing was never
established. The only test which suggested a possible problem with the lot of propellant
tested at PS| were the actual test firings in a 25-mm electrically ignited fixture.

Although the |B gas evolution process, based on tests covering a wide range of projectile
masses, appears to be largely self-limiting, it must be emphasized that this etfect is not
independent of the propellant, the type of igniter, and the charge configuration,

It appears that two of the catastrophic failures described above may be attributed to
Improper ignition of the propellant. Interestingly, Lamonica and Hedden (1955), based on
tests with hydrazine nitrate in 40-mm cased rounds, commented on such a problem 35 years
ago:

“.... it was discovered that high chamber pressures may result if the igniter
does not supply sufficient energy to the propeliant to immediately initiate the
main self-sustaining reaction before some motion of the projectile takes
place. The mechanism operating in such cases would seem to be that the
igniter produces at first only a feeble propellant reaction, but that sufficient
pressure is produced to initiate motion of the projectile. This motion of the
projectile increases .... the volume avallable to the propellant and a vigorous
reaction takes place in a chamber in which, in effect, the ullage has been
increased to a high value. Pressures characteristic of high ullage charges
result. This source of high pressures was effectively controlied by increasing
the rate of delivery of energy from the Igniter." .

The comments by Lamonica and Hedden (1955) also indicate that excessive ullage may .
be a contributing factor in generating high pressures. Later findings, however, suggested that
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ullage may be used as a method for controlling maximum prassures. Obviously, tests
identifying the sensitivity of the propellant to adiabatic compression need to be performed.

Although it is interesting to note that Lamonica and Hedden (1955) concluded that high
pressures could be controlled by increasing the rate of delivery of energy from the igniter, it
should be emphasized that too high a rate may simply result in an excessive gas generation
rate, a condition which could also result in excessive pressures.

8. RELEVANCE TO ETC PROPULSION

The importance of controlling the ignition, both for controlling the IB processes and
avolding catastrophic failures, should be evident. Also of concern Is the type of bulk-loaded
charge used and the approach used for filling the chamber. If ullage is present, then a
concern with monopropellants must exist related to adiabatic comprassion ignition of the
bubbles. With bipropallants, some safety related ignition concerns may be alleviated.
However, the use of bipropellants can result in problems with mixing of the components and
less than expected ballistic performance. Bipropellants, as demonstrated by the dynamic
injection work at NWC (Wood and Bryant 1877; Charters, Compton, and Wood 1877; Mallory
1981, 1984), however, offer an important approach for controlling the surface area, and they
offer potentially important safety and vulnerability advantages. Slurry propellants (Goddard
1981; Goddard and Goddard 1983, 1984) may also offer a similar advantage, although the
contro! of the 1B process with slurry propellants has not been demonstrated. Dynamic
injection of the propellant based on the early work at Detroit Controls (Elmore, Quinn, and
Anderson 1955) might also help to stabilize the early formation of the Taylor cavity.

The importance ot achieving distributed Ignition, as used in solid propellant guns to reduce
the effects of pressure waves, was recognized in the early BLP studies. In the 1950s,
DeDapper et al. (1955) reported a concern on the use of pyrotechnic primers when located at
the breech in large-caliber weapons due to the limited penetration depth of the igniter output
relative to the length of the charge. He estimated that the penetration depth is less than 5 cm
in 0.5 ms, a depth which was not considered acceptable for large-caliber guns. Later,
Hartman et al. (1976), based on a flow visualization study, concluded that the penetration
depth for an end vent type of pyrotechnic igniter mounted at the breech, would not have a
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significant effect on the formation of the Taylor cavity, and, therefore, would not be an
effective method for reducing the effect of pressure waves. It would, therefore, seem that
approaches for achieving a more distributed ignition should be considered.

In his status report on ETC, Oberle (1988) concluded that a high level of turbulence during
the IB processes would be required to generate the required surface area. The Helmholitz
mixing process described above for the BLP gun is one such mechanism that can generate
the required surface area.

One of the claims of the ETC system is that the IB processes can be controlled by the
spatial and time dependence on the transfer of electrical energy to the plasma and to the
working fluld. Although the ignition energy Is much less in the BLP gun approach, we saw in
one example with the relatively large solid propellant igniter (Figure 5 and Table 1) that there
was an indication that not only control of the IB process may be possible with a large igniter,
but also that the approach may offer a means of varying the shape of the pressure-time curve,
an important consideration for possible artillery application.

The lack of control of the IB process demonstrated in Figure 6 (despite, apparently, the
use of a reasonably reproducible igniter) suggests that control mechanisms during the process
must extend well into combustion cycle. One approach, although not demonstrated in terms
of ballistic repeatability, might be the use of slurry propeliants using solid propellants to
provide a well-defined surface area. Slurry propeliants, however, depending on their
properties, type of ignition, and particle density, could result in an increase in sensitivity
(Kooker 1980). Another approach may be realized in ETC by maintaining the electrical
transfer of energy during the turbulent combustion processes. Supporting the argument for a
controlied transfer of energy between the primer and the BLP charge were some analytical
studies (Guzdar, Rhee, and Erickson 1971) performed with the goal of understanding the
wave dynamics of a breech ignited charge. These studies concluded that a primer which
generated a continuously increasing pressure (l.e., a ramp-type of output) would avoid the
problem of cavitation within the charge and hence avoid both ignition from adiabatic
compression and the generation of uncontrolled surtace areas.
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Although brueach ignition was shown to be feasible in the BLP gun, even for calibers up to
120-mm, it muet o= - recognized that bree..! 1ntlon will result in longitudinal waves and may
very well result in uri.ccoptable prassure amplitvries. The reason for their absence in many
of the BLP tests, bosides the dampening effects used with projectile base absorbers, may
have been a result of uncontrolled front end ignition winch may have servad to attenuate the
waves. This uncertainty in the BLP resuits serves to emphas:ize ths importance of extensive
diagnostics, especially during the early stages of a development propulsion program.

In conclusion, the control mechanisms in the BLP gun are directly related to the initial
conditions. Once combustion is underway, the evolution of gas is seif-sustaining. Comparing
with the ETC concept and when working fluids with high activation energles are used, the
evolution of gas could be limited by Interaction with the plasma. If the interaction were not
sufficlent to sustain combustion, then the evolution of gas would cease (unlike the BLP gun
case where we saw that excassive pressures may occur for cases when the propeliant was
poorly ignited). It would, therefore, appear that for poor ignition with the ETC concept and
when working fluids with high activation energies are used, that the ignition and combustion
may be fail safe, that is, excess pressures might be avoided If the working fluid were poorly
ignited, or If the plasma for some reason were extinguished. The falil safe feature of the ETC
gun will have to be verified by diagnostic tests. .
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